| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfeud2 | GIF version | ||
| Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| nfeud2.1 | ⊢ Ⅎyφ |
| nfeud2.2 | ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxψ) |
| Ref | Expression |
|---|---|
| nfeud2 | ⊢ (φ → Ⅎx∃!yψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2208 | . 2 ⊢ (∃!yψ ↔ ∃z∀y(ψ ↔ y = z)) | |
| 2 | nfv 1619 | . . 3 ⊢ Ⅎzφ | |
| 3 | nfeud2.1 | . . . . 5 ⊢ Ⅎyφ | |
| 4 | nfnae 1956 | . . . . 5 ⊢ Ⅎy ¬ ∀x x = z | |
| 5 | 3, 4 | nfan 1824 | . . . 4 ⊢ Ⅎy(φ ∧ ¬ ∀x x = z) |
| 6 | nfeud2.2 | . . . . . 6 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxψ) | |
| 7 | 6 | adantlr 695 | . . . . 5 ⊢ (((φ ∧ ¬ ∀x x = z) ∧ ¬ ∀x x = y) → Ⅎxψ) |
| 8 | nfeqf 1958 | . . . . . . 7 ⊢ ((¬ ∀x x = y ∧ ¬ ∀x x = z) → Ⅎx y = z) | |
| 9 | 8 | ancoms 439 | . . . . . 6 ⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) → Ⅎx y = z) |
| 10 | 9 | adantll 694 | . . . . 5 ⊢ (((φ ∧ ¬ ∀x x = z) ∧ ¬ ∀x x = y) → Ⅎx y = z) |
| 11 | 7, 10 | nfbid 1832 | . . . 4 ⊢ (((φ ∧ ¬ ∀x x = z) ∧ ¬ ∀x x = y) → Ⅎx(ψ ↔ y = z)) |
| 12 | 5, 11 | nfald2 1972 | . . 3 ⊢ ((φ ∧ ¬ ∀x x = z) → Ⅎx∀y(ψ ↔ y = z)) |
| 13 | 2, 12 | nfexd2 1973 | . 2 ⊢ (φ → Ⅎx∃z∀y(ψ ↔ y = z)) |
| 14 | 1, 13 | nfxfrd 1571 | 1 ⊢ (φ → Ⅎx∃!yψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∃!weu 2204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-eu 2208 |
| This theorem is referenced by: nfmod2 2217 nfeud 2218 nfreud 2784 |
| Copyright terms: Public domain | W3C validator |