New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfcvf Unicode version

Theorem nfcvf 2511
 Description: If and are distinct, then is not free in . (Contributed by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
nfcvf

Proof of Theorem nfcvf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfcv 2489 . 2
2 nfcv 2489 . 2
3 id 19 . 2
41, 2, 3dvelimc 2510 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4  wal 1540   wceq 1642  wnfc 2476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2478 This theorem is referenced by:  nfcvf2  2512  nfrald  2665  ralcom2  2775  nfreud  2783  nfrmod  2784  nfrmo  2786  nfiotad  4342
 Copyright terms: Public domain W3C validator