New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkth1g | Unicode version |
Description: Equality of the first member of a Kuratowski ordered pair, which holds regardless of the sethood of the second members. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
opkth1g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2353 | . . . . 5 | |
2 | 1 | orci 379 | . . . 4 |
3 | elopk 4130 | . . . 4 | |
4 | 2, 3 | mpbir 200 | . . 3 |
5 | eleq2 2414 | . . . . 5 | |
6 | 5 | biimprd 214 | . . . 4 |
7 | elopk 4130 | . . . . 5 | |
8 | snidg 3759 | . . . . . . 7 | |
9 | eleq2 2414 | . . . . . . 7 | |
10 | 8, 9 | syl5ibrcom 213 | . . . . . 6 |
11 | prid1g 3826 | . . . . . . 7 | |
12 | eleq2 2414 | . . . . . . 7 | |
13 | 11, 12 | syl5ibrcom 213 | . . . . . 6 |
14 | 10, 13 | jaod 369 | . . . . 5 |
15 | 7, 14 | syl5bi 208 | . . . 4 |
16 | 6, 15 | sylan9r 639 | . . 3 |
17 | 4, 16 | mpi 16 | . 2 |
18 | elsncg 3756 | . . 3 | |
19 | 18 | adantr 451 | . 2 |
20 | 17, 19 | mpbid 201 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wo 357 wa 358 wceq 1642 wcel 1710 csn 3738 cpr 3739 copk 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 |
This theorem is referenced by: opkthg 4132 |
Copyright terms: Public domain | W3C validator |