NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jaod Unicode version

Theorem jaod 369
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
jaod.1
jaod.2
Assertion
Ref Expression
jaod

Proof of Theorem jaod
StepHypRef Expression
1 jaod.1 . . . 4
21com12 27 . . 3
3 jaod.2 . . . 4
43com12 27 . . 3
52, 4jaoi 368 . 2
65com12 27 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  mpjaod  370  orel2  372  pm2.621  397  jaao  495  jaodan  760  pm2.63  763  ecase2d  906  ecase3d  909  dedlema  920  dedlemb  921  cad0  1400  psssstr  3376  opkth1g  4131  lenltfin  4470  ssfin  4471  evenodddisj  4517  vfinspss  4552  vinf  4556  fununi  5161  weds  5939  enprmaplem3  6079  leconnnc  6219  addceq0  6220  nclenn  6250  muc0or  6253  ncslesuc  6268  nnc3n3p1  6279  nchoicelem6  6295  dmfrec  6317  fnfreclem2  6319
  Copyright terms: Public domain W3C validator