NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  phiexg Unicode version

Theorem phiexg 4571
Description: The phi operator preserves sethood. (Contributed by SF, 3-Feb-2015.)
Assertion
Ref Expression
phiexg Phi

Proof of Theorem phiexg
StepHypRef Expression
1 dfphi2 4569 . 2 Phi Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k
2 addcexlem 4382 . . . . . . 7 Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1c
3 1cex 4142 . . . . . . . . 9 1c
43pw1ex 4303 . . . . . . . 8 1 1c
54pw1ex 4303 . . . . . . 7 1 1 1c
62, 5imakex 4300 . . . . . 6 Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c
76imagekex 4312 . . . . 5 Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c
8 nncex 4396 . . . . . 6 Nn
9 vvex 4109 . . . . . 6
108, 9xpkex 4289 . . . . 5 Nn k
117, 10inex 4105 . . . 4 Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k
12 idkex 4314 . . . . 5 k
138complex 4104 . . . . . 6 Nn
1413, 9xpkex 4289 . . . . 5 Nn k
1512, 14inex 4105 . . . 4 k Nn k
1611, 15unex 4106 . . 3 Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k
17 imakexg 4299 . . 3 Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k
1816, 17mpan 651 . 2 Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k
191, 18syl5eqel 2437 1 Phi
Colors of variables: wff setvar class
Syntax hints:   wi 4   wcel 1710  cvv 2859   ∼ ccompl 3205   cdif 3206   cun 3207   cin 3208   csymdif 3209  1cc1c 4134  1 cpw1 4135   k cxpk 4174   Ins2k cins2k 4176   Ins3k cins3k 4177  kcimak 4179   SIk csik 4181  Imagekcimagek 4182   Sk cssetk 4183   k cidk 4184   Nn cnnc 4373   Phi cphi 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-addc 4378  df-nnc 4379  df-phi 4565
This theorem is referenced by:  phiex  4572
  Copyright terms: Public domain W3C validator