New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > complex | Unicode version |
Description: The complement of a set is a set. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
boolex.1 |
Ref | Expression |
---|---|
complex | ∼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | boolex.1 | . 2 | |
2 | complexg 4100 | . 2 ∼ | |
3 | 1, 2 | ax-mp 5 | 1 ∼ |
Colors of variables: wff setvar class |
Syntax hints: wcel 1710 cvv 2860 ∼ ccompl 3206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 |
This theorem is referenced by: vvex 4110 0ex 4111 imakexg 4300 intexg 4320 addcexlem 4383 nnsucelrlem1 4425 nndisjeq 4430 preaddccan2lem1 4455 ltfinex 4465 ssfin 4471 ncfinraiselem2 4481 ncfinlowerlem1 4483 tfinrelkex 4488 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelkex 4526 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 vfintle 4547 vfin1cltv 4548 nulnnn 4557 phiexg 4572 opexg 4588 proj1exg 4592 proj2exg 4593 setconslem5 4736 1stex 4740 swapex 4743 nfunv 5139 mptexlem 5811 disjex 5824 funsex 5829 fullfunexg 5860 transex 5911 refex 5912 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 endisj 6052 enprmaplem4 6080 nenpw1pwlem1 6085 ncaddccl 6145 tcdi 6165 ovcelem1 6172 ceex 6175 ce0nn 6181 tcfnex 6245 nclennlem1 6249 nmembers1lem1 6269 nnc3n3p1 6279 nchoicelem11 6300 nchoicelem16 6305 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |