New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addcexlem | Unicode version |
Description: The expression at the heart of dfaddc2 4382 is a set. (Contributed by SF, 17-Jan-2015.) |
Ref | Expression |
---|---|
addcexlem | Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssetkex 4295 | . . . . . . 7 Sk | |
2 | 1 | ins3kex 4309 | . . . . . 6 Ins3k Sk |
3 | 1 | ins2kex 4308 | . . . . . 6 Ins2k Sk |
4 | 2, 3 | inex 4106 | . . . . 5 Ins3k Sk Ins2k Sk |
5 | 1cex 4143 | . . . . . . 7 1c | |
6 | 5 | pw1ex 4304 | . . . . . 6 1 1c |
7 | 6 | pw1ex 4304 | . . . . 5 1 1 1c |
8 | 4, 7 | imakex 4301 | . . . 4 Ins3k Sk Ins2k Sk k1 1 1c |
9 | 8 | complex 4105 | . . 3 ∼ Ins3k Sk Ins2k Sk k1 1 1c |
10 | 9 | ins3kex 4309 | . 2 Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c |
11 | 3 | ins2kex 4308 | . . . 4 Ins2k Ins2k Sk |
12 | 2 | ins2kex 4308 | . . . . 5 Ins2k Ins3k Sk |
13 | 1 | sikex 4298 | . . . . . . 7 SIk Sk |
14 | 13 | sikex 4298 | . . . . . 6 SIk SIk Sk |
15 | 14 | ins3kex 4309 | . . . . 5 Ins3k SIk SIk Sk |
16 | 12, 15 | unex 4107 | . . . 4 Ins2k Ins3k Sk Ins3k SIk SIk Sk |
17 | 11, 16 | symdifex 4109 | . . 3 Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk |
18 | 7 | pw1ex 4304 | . . . 4 1 1 1 1c |
19 | 18 | pw1ex 4304 | . . 3 1 1 1 1 1c |
20 | 17, 19 | imakex 4301 | . 2 Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1c |
21 | 10, 20 | difex 4108 | 1 Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1c |
Colors of variables: wff setvar class |
Syntax hints: wcel 1710 cvv 2860 ∼ ccompl 3206 cdif 3207 cun 3208 cin 3209 csymdif 3210 1cc1c 4135 1 cpw1 4136 Ins2k cins2k 4177 Ins3k cins3k 4178 kcimak 4180 SIk csik 4182 Sk cssetk 4184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 |
This theorem is referenced by: addcexg 4394 nncex 4397 nnc0suc 4413 nncaddccl 4420 nnsucelrlem1 4425 preaddccan2lem1 4455 ltfinex 4465 evenodddisjlem1 4516 phiexg 4572 opexg 4588 proj1exg 4592 proj2exg 4593 phialllem1 4617 setconslem5 4736 1stex 4740 swapex 4743 |
Copyright terms: Public domain | W3C validator |