New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nncex | Unicode version |
Description: The class of all finite cardinals is a set. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
nncex | Nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnnc2 4395 | . 2 Nn 0c Sk Sk k SIk Imagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1ck1c | |
2 | setswithex 4322 | . . . 4 0c | |
3 | ssetkex 4294 | . . . . . 6 Sk | |
4 | addcexlem 4382 | . . . . . . . . . 10 Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1c | |
5 | 1cex 4142 | . . . . . . . . . . . 12 1c | |
6 | 5 | pw1ex 4303 | . . . . . . . . . . 11 1 1c |
7 | 6 | pw1ex 4303 | . . . . . . . . . 10 1 1 1c |
8 | 4, 7 | imakex 4300 | . . . . . . . . 9 Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c |
9 | 8 | imagekex 4312 | . . . . . . . 8 Imagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c |
10 | 9 | sikex 4297 | . . . . . . 7 SIk Imagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c |
11 | 3, 10 | cokex 4310 | . . . . . 6 Sk k SIk Imagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c |
12 | 3, 11 | difex 4107 | . . . . 5 Sk Sk k SIk Imagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c |
13 | 12, 5 | imakex 4300 | . . . 4 Sk Sk k SIk Imagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1ck1c |
14 | 2, 13 | difex 4107 | . . 3 0c Sk Sk k SIk Imagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1ck1c |
15 | 14 | intex 4320 | . 2 0c Sk Sk k SIk Imagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1ck1c |
16 | 1, 15 | eqeltri 2423 | 1 Nn |
Colors of variables: wff setvar class |
Syntax hints: wcel 1710 cab 2339 cvv 2859 ∼ ccompl 3205 cdif 3206 cun 3207 cin 3208 csymdif 3209 cint 3926 1cc1c 4134 1 cpw1 4135 Ins2k cins2k 4176 Ins3k cins3k 4177 kcimak 4179 k ccomk 4180 SIk csik 4181 Imagekcimagek 4182 Sk cssetk 4183 Nn cnnc 4373 0cc0c 4374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-addc 4378 df-nnc 4379 |
This theorem is referenced by: finex 4397 peano5 4409 nnc0suc 4412 nncaddccl 4419 nndisjeq 4429 ltfinex 4464 ncfinraiselem2 4480 ncfinlowerlem1 4482 tfinrelkex 4487 evenfinex 4503 oddfinex 4504 evenodddisjlem1 4515 nnpweqlem1 4522 srelkex 4525 tfinnnlem1 4533 vfinspnn 4541 phiexg 4571 opexg 4587 proj1exg 4591 proj2exg 4592 phialllem1 4616 phialllem2 4617 setconslem5 4735 1stex 4739 swapex 4742 nclennlem1 6248 nmembers1lem1 6268 nncdiv3lem2 6276 nnc3n3p1 6278 nchoicelem16 6304 frecxp 6314 |
Copyright terms: Public domain | W3C validator |