| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pw1disj | Unicode version | ||
| Description: Two unit power classes are disjoint iff the classes themselves are disjoint. (Contributed by SF, 26-Jan-2015.) |
| Ref | Expression |
|---|---|
| pw1disj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj 3592 |
. . . . . 6
| |
| 2 | eleq1 2413 |
. . . . . . . 8
| |
| 3 | 2 | notbid 285 |
. . . . . . 7
|
| 4 | 3 | rspccv 2953 |
. . . . . 6
|
| 5 | 1, 4 | sylbi 187 |
. . . . 5
|
| 6 | snelpw1 4147 |
. . . . 5
| |
| 7 | snelpw1 4147 |
. . . . . 6
| |
| 8 | 7 | notbii 287 |
. . . . 5
|
| 9 | 5, 6, 8 | 3imtr3g 260 |
. . . 4
|
| 10 | 9 | ralrimiv 2697 |
. . 3
|
| 11 | disj 3592 |
. . 3
| |
| 12 | 10, 11 | sylibr 203 |
. 2
|
| 13 | elpw1 4145 |
. . . . 5
| |
| 14 | disj 3592 |
. . . . . . . . 9
| |
| 15 | rsp 2675 |
. . . . . . . . 9
| |
| 16 | 14, 15 | sylbi 187 |
. . . . . . . 8
|
| 17 | 16 | imp 418 |
. . . . . . 7
|
| 18 | eleq1 2413 |
. . . . . . . . 9
| |
| 19 | snelpw1 4147 |
. . . . . . . . 9
| |
| 20 | 18, 19 | syl6bb 252 |
. . . . . . . 8
|
| 21 | 20 | notbid 285 |
. . . . . . 7
|
| 22 | 17, 21 | syl5ibrcom 213 |
. . . . . 6
|
| 23 | 22 | rexlimdva 2739 |
. . . . 5
|
| 24 | 13, 23 | syl5bi 208 |
. . . 4
|
| 25 | 24 | ralrimiv 2697 |
. . 3
|
| 26 | disj 3592 |
. . 3
| |
| 27 | 25, 26 | sylibr 203 |
. 2
|
| 28 | 12, 27 | impbii 180 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |