New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pw1disj | Unicode version |
Description: Two unit power classes are disjoint iff the classes themselves are disjoint. (Contributed by SF, 26-Jan-2015.) |
Ref | Expression |
---|---|
pw1disj | 1 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 3592 | . . . . . 6 1 1 1 1 | |
2 | eleq1 2413 | . . . . . . . 8 1 1 | |
3 | 2 | notbid 285 | . . . . . . 7 1 1 |
4 | 3 | rspccv 2953 | . . . . . 6 1 1 1 1 |
5 | 1, 4 | sylbi 187 | . . . . 5 1 1 1 1 |
6 | snelpw1 4147 | . . . . 5 1 | |
7 | snelpw1 4147 | . . . . . 6 1 | |
8 | 7 | notbii 287 | . . . . 5 1 |
9 | 5, 6, 8 | 3imtr3g 260 | . . . 4 1 1 |
10 | 9 | ralrimiv 2697 | . . 3 1 1 |
11 | disj 3592 | . . 3 | |
12 | 10, 11 | sylibr 203 | . 2 1 1 |
13 | elpw1 4145 | . . . . 5 1 | |
14 | disj 3592 | . . . . . . . . 9 | |
15 | rsp 2675 | . . . . . . . . 9 | |
16 | 14, 15 | sylbi 187 | . . . . . . . 8 |
17 | 16 | imp 418 | . . . . . . 7 |
18 | eleq1 2413 | . . . . . . . . 9 1 1 | |
19 | snelpw1 4147 | . . . . . . . . 9 1 | |
20 | 18, 19 | syl6bb 252 | . . . . . . . 8 1 |
21 | 20 | notbid 285 | . . . . . . 7 1 |
22 | 17, 21 | syl5ibrcom 213 | . . . . . 6 1 |
23 | 22 | rexlimdva 2739 | . . . . 5 1 |
24 | 13, 23 | syl5bi 208 | . . . 4 1 1 |
25 | 24 | ralrimiv 2697 | . . 3 1 1 |
26 | disj 3592 | . . 3 1 1 1 1 | |
27 | 25, 26 | sylibr 203 | . 2 1 1 |
28 | 12, 27 | impbii 180 | 1 1 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wral 2615 wrex 2616 cin 3209 c0 3551 csn 3738 1 cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |