Step | Hyp | Ref
| Expression |
1 | | disj 3592 |
. . . . . 6
⊢ ((℘1A ∩ ℘1B) = ∅ ↔
∀y
∈ ℘1 A ¬ y ∈ ℘1B) |
2 | | eleq1 2413 |
. . . . . . . 8
⊢ (y = {x} →
(y ∈
℘1B ↔ {x}
∈ ℘1B)) |
3 | 2 | notbid 285 |
. . . . . . 7
⊢ (y = {x} →
(¬ y ∈ ℘1B ↔ ¬ {x} ∈ ℘1B)) |
4 | 3 | rspccv 2953 |
. . . . . 6
⊢ (∀y ∈ ℘1
A ¬ y ∈ ℘1B → ({x}
∈ ℘1A → ¬ {x} ∈ ℘1B)) |
5 | 1, 4 | sylbi 187 |
. . . . 5
⊢ ((℘1A ∩ ℘1B) = ∅ →
({x} ∈
℘1A → ¬ {x} ∈ ℘1B)) |
6 | | snelpw1 4147 |
. . . . 5
⊢ ({x} ∈ ℘1A ↔ x ∈ A) |
7 | | snelpw1 4147 |
. . . . . 6
⊢ ({x} ∈ ℘1B ↔ x ∈ B) |
8 | 7 | notbii 287 |
. . . . 5
⊢ (¬ {x} ∈ ℘1B ↔ ¬ x
∈ B) |
9 | 5, 6, 8 | 3imtr3g 260 |
. . . 4
⊢ ((℘1A ∩ ℘1B) = ∅ →
(x ∈
A → ¬ x ∈ B)) |
10 | 9 | ralrimiv 2697 |
. . 3
⊢ ((℘1A ∩ ℘1B) = ∅ →
∀x
∈ A ¬
x ∈
B) |
11 | | disj 3592 |
. . 3
⊢ ((A ∩ B) =
∅ ↔ ∀x ∈ A ¬
x ∈
B) |
12 | 10, 11 | sylibr 203 |
. 2
⊢ ((℘1A ∩ ℘1B) = ∅ →
(A ∩ B) = ∅) |
13 | | elpw1 4145 |
. . . . 5
⊢ (x ∈ ℘1A ↔ ∃y ∈ A x = {y}) |
14 | | disj 3592 |
. . . . . . . . 9
⊢ ((A ∩ B) =
∅ ↔ ∀y ∈ A ¬
y ∈
B) |
15 | | rsp 2675 |
. . . . . . . . 9
⊢ (∀y ∈ A ¬
y ∈
B → (y ∈ A → ¬ y
∈ B)) |
16 | 14, 15 | sylbi 187 |
. . . . . . . 8
⊢ ((A ∩ B) =
∅ → (y ∈ A → ¬ y
∈ B)) |
17 | 16 | imp 418 |
. . . . . . 7
⊢ (((A ∩ B) =
∅ ∧
y ∈
A) → ¬ y ∈ B) |
18 | | eleq1 2413 |
. . . . . . . . 9
⊢ (x = {y} →
(x ∈
℘1B ↔ {y}
∈ ℘1B)) |
19 | | snelpw1 4147 |
. . . . . . . . 9
⊢ ({y} ∈ ℘1B ↔ y ∈ B) |
20 | 18, 19 | syl6bb 252 |
. . . . . . . 8
⊢ (x = {y} →
(x ∈
℘1B ↔ y ∈ B)) |
21 | 20 | notbid 285 |
. . . . . . 7
⊢ (x = {y} →
(¬ x ∈ ℘1B ↔ ¬ y
∈ B)) |
22 | 17, 21 | syl5ibrcom 213 |
. . . . . 6
⊢ (((A ∩ B) =
∅ ∧
y ∈
A) → (x = {y} →
¬ x ∈
℘1B)) |
23 | 22 | rexlimdva 2739 |
. . . . 5
⊢ ((A ∩ B) =
∅ → (∃y ∈ A x = {y} →
¬ x ∈
℘1B)) |
24 | 13, 23 | syl5bi 208 |
. . . 4
⊢ ((A ∩ B) =
∅ → (x ∈ ℘1A → ¬ x
∈ ℘1B)) |
25 | 24 | ralrimiv 2697 |
. . 3
⊢ ((A ∩ B) =
∅ → ∀x ∈ ℘1
A ¬ x ∈ ℘1B) |
26 | | disj 3592 |
. . 3
⊢ ((℘1A ∩ ℘1B) = ∅ ↔
∀x
∈ ℘1 A ¬ x ∈ ℘1B) |
27 | 25, 26 | sylibr 203 |
. 2
⊢ ((A ∩ B) =
∅ → (℘1A ∩ ℘1B) = ∅) |
28 | 12, 27 | impbii 180 |
1
⊢ ((℘1A ∩ ℘1B) = ∅ ↔
(A ∩ B) = ∅) |