NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r2ex GIF version

Theorem r2ex 2653
Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
r2ex (x A y B φxy((x A y B) φ))
Distinct variable groups:   x,y   y,A
Allowed substitution hints:   φ(x,y)   A(x)   B(x,y)

Proof of Theorem r2ex
StepHypRef Expression
1 nfcv 2490 . 2 yA
21r2exf 2651 1 (x A y B φxy((x A y B) φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621
This theorem is referenced by:  reean  2778  elxpk2  4198  evenfinex  4504  oddfinex  4505  rnoprab2  5578  rnmpt2  5718  lecex  6116  mucnc  6132
  Copyright terms: Public domain W3C validator