New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mucnc | Unicode version |
Description: Cardinal multiplication in terms of cardinality. Theorem XI.2.27 of [Rosser] p. 378. (Contributed by SF, 10-Mar-2015.) |
Ref | Expression |
---|---|
mucnc.1 | |
mucnc.2 |
Ref | Expression |
---|---|
mucnc | Nc ·c Nc Nc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mucnc.1 | . . . 4 | |
2 | 1 | ncelncsi 6121 | . . 3 Nc NC |
3 | mucnc.2 | . . . 4 | |
4 | 3 | ncelncsi 6121 | . . 3 Nc NC |
5 | ovmuc 6130 | . . 3 Nc NC Nc NC Nc ·c Nc Nc Nc | |
6 | 2, 4, 5 | mp2an 653 | . 2 Nc ·c Nc Nc Nc |
7 | df-nc 6101 | . . 3 Nc | |
8 | dfec2 5948 | . . 3 | |
9 | elnc 6125 | . . . . . . . 8 Nc | |
10 | elnc 6125 | . . . . . . . 8 Nc | |
11 | 9, 10 | anbi12i 678 | . . . . . . 7 Nc Nc |
12 | ensym 6037 | . . . . . . 7 | |
13 | 11, 12 | anbi12i 678 | . . . . . 6 Nc Nc |
14 | 13 | 2exbii 1583 | . . . . 5 Nc Nc |
15 | r2ex 2652 | . . . . 5 Nc Nc Nc Nc | |
16 | 1 | enrflx 6035 | . . . . . . 7 |
17 | 3 | enrflx 6035 | . . . . . . 7 |
18 | breq1 4642 | . . . . . . . . . 10 | |
19 | breq1 4642 | . . . . . . . . . 10 | |
20 | 18, 19 | bi2anan9 843 | . . . . . . . . 9 |
21 | xpeq12 4803 | . . . . . . . . . 10 | |
22 | 21 | breq1d 4649 | . . . . . . . . 9 |
23 | 20, 22 | anbi12d 691 | . . . . . . . 8 |
24 | 1, 3, 23 | spc2ev 2947 | . . . . . . 7 |
25 | 16, 17, 24 | mpanl12 663 | . . . . . 6 |
26 | xpen 6055 | . . . . . . . . 9 | |
27 | ensym 6037 | . . . . . . . . 9 | |
28 | 26, 27 | sylib 188 | . . . . . . . 8 |
29 | entr 6038 | . . . . . . . 8 | |
30 | 28, 29 | sylan 457 | . . . . . . 7 |
31 | 30 | exlimivv 1635 | . . . . . 6 |
32 | 25, 31 | impbii 180 | . . . . 5 |
33 | 14, 15, 32 | 3bitr4ri 269 | . . . 4 Nc Nc |
34 | 33 | abbii 2465 | . . 3 Nc Nc |
35 | 7, 8, 34 | 3eqtrri 2378 | . 2 Nc Nc Nc |
36 | 6, 35 | eqtri 2373 | 1 Nc ·c Nc Nc |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wex 1541 wceq 1642 wcel 1710 cab 2339 wrex 2615 cvv 2859 class class class wbr 4639 cxp 4770 (class class class)co 5525 cec 5945 cen 6028 NC cncs 6088 Nc cnc 6091 ·c cmuc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-csb 3137 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-iun 3971 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt 5652 df-mpt2 5654 df-txp 5736 df-pprod 5738 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-cross 5764 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-qs 5951 df-en 6029 df-ncs 6098 df-nc 6101 df-muc 6102 |
This theorem is referenced by: muccl 6132 muccom 6134 mucass 6135 muc0 6142 mucid1 6143 addcdi 6250 muc0or 6252 |
Copyright terms: Public domain | W3C validator |