NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r2exf GIF version

Theorem r2exf 2651
Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1 yA
Assertion
Ref Expression
r2exf (x A y B φxy((x A y B) φ))
Distinct variable group:   x,y
Allowed substitution hints:   φ(x,y)   A(x,y)   B(x,y)

Proof of Theorem r2exf
StepHypRef Expression
1 df-rex 2621 . 2 (x A y B φx(x A y B φ))
2 r2alf.1 . . . . . 6 yA
32nfcri 2484 . . . . 5 y x A
4319.42 1880 . . . 4 (y(x A (y B φ)) ↔ (x A y(y B φ)))
5 anass 630 . . . . 5 (((x A y B) φ) ↔ (x A (y B φ)))
65exbii 1582 . . . 4 (y((x A y B) φ) ↔ y(x A (y B φ)))
7 df-rex 2621 . . . . 5 (y B φy(y B φ))
87anbi2i 675 . . . 4 ((x A y B φ) ↔ (x A y(y B φ)))
94, 6, 83bitr4i 268 . . 3 (y((x A y B) φ) ↔ (x A y B φ))
109exbii 1582 . 2 (xy((x A y B) φ) ↔ x(x A y B φ))
111, 10bitr4i 243 1 (x A y B φxy((x A y B) φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   wcel 1710  wnfc 2477  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621
This theorem is referenced by:  r2ex  2653  rexcomf  2771
  Copyright terms: Public domain W3C validator