NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexeqbidv Unicode version

Theorem rexeqbidv 2821
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
Hypotheses
Ref Expression
raleqbidv.1
raleqbidv.2
Assertion
Ref Expression
rexeqbidv
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rexeqbidv
StepHypRef Expression
1 raleqbidv.1 . . 3
21rexeqdv 2815 . 2
3 raleqbidv.2 . . 3
43rexbidv 2636 . 2
52, 4bitrd 244 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wceq 1642  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621
This theorem is referenced by:  elsuci  4415  nnsucelr  4429  clos1basesucg  5885  el2c  6192  dflec3  6222  nmembers1lem3  6271
  Copyright terms: Public domain W3C validator