New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > el2c | Unicode version |
Description: Membership in cardinal two. (Contributed by SF, 3-Mar-2015.) |
Ref | Expression |
---|---|
el2c | 2c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuc 4414 | . . 3 1c 1c 1c ∼ | |
2 | df-rex 2621 | . . 3 1c ∼ 1c ∼ | |
3 | el1c 4140 | . . . . . . 7 1c | |
4 | 3 | anbi1i 676 | . . . . . 6 1c ∼ ∼ |
5 | 19.41v 1901 | . . . . . 6 ∼ ∼ | |
6 | 4, 5 | bitr4i 243 | . . . . 5 1c ∼ ∼ |
7 | 6 | exbii 1582 | . . . 4 1c ∼ ∼ |
8 | excom 1741 | . . . 4 ∼ ∼ | |
9 | 7, 8 | bitri 240 | . . 3 1c ∼ ∼ |
10 | 1, 2, 9 | 3bitri 262 | . 2 1c 1c ∼ |
11 | 1p1e2c 6156 | . . 3 1c 1c 2c | |
12 | 11 | eleq2i 2417 | . 2 1c 1c 2c |
13 | snex 4112 | . . . . 5 | |
14 | compleq 3244 | . . . . . 6 ∼ ∼ | |
15 | uneq1 3412 | . . . . . . . 8 | |
16 | df-pr 3743 | . . . . . . . 8 | |
17 | 15, 16 | syl6eqr 2403 | . . . . . . 7 |
18 | 17 | eqeq2d 2364 | . . . . . 6 |
19 | 14, 18 | rexeqbidv 2821 | . . . . 5 ∼ ∼ |
20 | 13, 19 | ceqsexv 2895 | . . . 4 ∼ ∼ |
21 | df-rex 2621 | . . . 4 ∼ ∼ | |
22 | elsn 3749 | . . . . . . . . 9 | |
23 | equcom 1680 | . . . . . . . . 9 | |
24 | 22, 23 | bitri 240 | . . . . . . . 8 |
25 | 24 | notbii 287 | . . . . . . 7 |
26 | vex 2863 | . . . . . . . 8 | |
27 | 26 | elcompl 3226 | . . . . . . 7 ∼ |
28 | df-ne 2519 | . . . . . . 7 | |
29 | 25, 27, 28 | 3bitr4i 268 | . . . . . 6 ∼ |
30 | 29 | anbi1i 676 | . . . . 5 ∼ |
31 | 30 | exbii 1582 | . . . 4 ∼ |
32 | 20, 21, 31 | 3bitri 262 | . . 3 ∼ |
33 | 32 | exbii 1582 | . 2 ∼ |
34 | 10, 12, 33 | 3bitr3i 266 | 1 2c |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 wne 2517 wrex 2616 ∼ ccompl 3206 cun 3208 csn 3738 cpr 3739 1cc1c 4135 cplc 4376 2cc2c 6095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-nc 6102 df-2c 6105 |
This theorem is referenced by: ce2 6193 |
Copyright terms: Public domain | W3C validator |