New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexeqbidv | GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (φ → A = B) |
raleqbidv.2 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
rexeqbidv | ⊢ (φ → (∃x ∈ A ψ ↔ ∃x ∈ B χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . 3 ⊢ (φ → A = B) | |
2 | 1 | rexeqdv 2815 | . 2 ⊢ (φ → (∃x ∈ A ψ ↔ ∃x ∈ B ψ)) |
3 | raleqbidv.2 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
4 | 3 | rexbidv 2636 | . 2 ⊢ (φ → (∃x ∈ B ψ ↔ ∃x ∈ B χ)) |
5 | 2, 4 | bitrd 244 | 1 ⊢ (φ → (∃x ∈ A ψ ↔ ∃x ∈ B χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 |
This theorem is referenced by: elsuci 4415 nnsucelr 4429 clos1basesucg 5885 el2c 6192 dflec3 6222 nmembers1lem3 6271 |
Copyright terms: Public domain | W3C validator |