| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbcrexg | GIF version | ||
| Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbcrexg | ⊢ (A ∈ V → ([̣A / x]̣∃y ∈ B φ ↔ ∃y ∈ B [̣A / x]̣φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3050 | . 2 ⊢ (z = A → ([z / x]∃y ∈ B φ ↔ [̣A / x]̣∃y ∈ B φ)) | |
| 2 | dfsbcq2 3050 | . . 3 ⊢ (z = A → ([z / x]φ ↔ [̣A / x]̣φ)) | |
| 3 | 2 | rexbidv 2636 | . 2 ⊢ (z = A → (∃y ∈ B [z / x]φ ↔ ∃y ∈ B [̣A / x]̣φ)) |
| 4 | nfcv 2490 | . . . 4 ⊢ ℲxB | |
| 5 | nfs1v 2106 | . . . 4 ⊢ Ⅎx[z / x]φ | |
| 6 | 4, 5 | nfrex 2670 | . . 3 ⊢ Ⅎx∃y ∈ B [z / x]φ |
| 7 | sbequ12 1919 | . . . 4 ⊢ (x = z → (φ ↔ [z / x]φ)) | |
| 8 | 7 | rexbidv 2636 | . . 3 ⊢ (x = z → (∃y ∈ B φ ↔ ∃y ∈ B [z / x]φ)) |
| 9 | 6, 8 | sbie 2038 | . 2 ⊢ ([z / x]∃y ∈ B φ ↔ ∃y ∈ B [z / x]φ) |
| 10 | 1, 3, 9 | vtoclbg 2916 | 1 ⊢ (A ∈ V → ([̣A / x]̣∃y ∈ B φ ↔ ∃y ∈ B [̣A / x]̣φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 [wsb 1648 ∈ wcel 1710 ∃wrex 2616 [̣wsbc 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |