NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sikeq Unicode version

Theorem sikeq 4242
Description: Equality theorem for Kuratowski singleton image. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
sikeq SIk SIk

Proof of Theorem sikeq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2414 . . . . . . 7
213anbi3d 1258 . . . . . 6
322exbidv 1628 . . . . 5
43anbi2d 684 . . . 4
542exbidv 1628 . . 3
65abbidv 2468 . 2
7 df-sik 4193 . 2 SIk
8 df-sik 4193 . 2 SIk
96, 7, 83eqtr4g 2410 1 SIk SIk
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   w3a 934  wex 1541   wceq 1642   wcel 1710  cab 2339  csn 3738  copk 4058   SIk csik 4182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-sik 4193
This theorem is referenced by:  sikeqi  4243  sikeqd  4244  imagekeq  4245  sikexg  4297
  Copyright terms: Public domain W3C validator