New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sikeq | Unicode version |
Description: Equality theorem for Kuratowski singleton image. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
sikeq | SIk SIk |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . . . . . . 7 | |
2 | 1 | 3anbi3d 1258 | . . . . . 6 |
3 | 2 | 2exbidv 1628 | . . . . 5 |
4 | 3 | anbi2d 684 | . . . 4 |
5 | 4 | 2exbidv 1628 | . . 3 |
6 | 5 | abbidv 2468 | . 2 |
7 | df-sik 4193 | . 2 SIk | |
8 | df-sik 4193 | . 2 SIk | |
9 | 6, 7, 8 | 3eqtr4g 2410 | 1 SIk SIk |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 w3a 934 wex 1541 wceq 1642 wcel 1710 cab 2339 csn 3738 copk 4058 SIk csik 4182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sik 4193 |
This theorem is referenced by: sikeqi 4243 sikeqd 4244 imagekeq 4245 sikexg 4297 |
Copyright terms: Public domain | W3C validator |