New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sikexg | Unicode version |
Description: The Kuratowski singleton image of a set is a set. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
sikexg | SIk |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sikeq 4242 | . . 3 SIk SIk | |
2 | 1 | eleq1d 2419 | . 2 SIk SIk |
3 | ax-si 4084 | . . 3 | |
4 | inss1 3476 | . . . . . . . 8 1c k 1c 1c k 1c | |
5 | sikss1c1c 4268 | . . . . . . . 8 SIk 1c k 1c | |
6 | 4, 5 | sikexlem 4296 | . . . . . . 7 1c k 1c SIk 1c k 1c SIk |
7 | vex 2863 | . . . . . . . . . . . 12 | |
8 | 7 | snel1c 4141 | . . . . . . . . . . 11 1c |
9 | vex 2863 | . . . . . . . . . . . 12 | |
10 | 9 | snel1c 4141 | . . . . . . . . . . 11 1c |
11 | snex 4112 | . . . . . . . . . . . 12 | |
12 | snex 4112 | . . . . . . . . . . . 12 | |
13 | 11, 12 | opkelxpk 4249 | . . . . . . . . . . 11 1c k 1c 1c 1c |
14 | 8, 10, 13 | mpbir2an 886 | . . . . . . . . . 10 1c k 1c |
15 | elin 3220 | . . . . . . . . . 10 1c k 1c 1c k 1c | |
16 | 14, 15 | mpbiran 884 | . . . . . . . . 9 1c k 1c |
17 | 7, 9 | opksnelsik 4266 | . . . . . . . . 9 SIk |
18 | 16, 17 | bibi12i 306 | . . . . . . . 8 1c k 1c SIk |
19 | 18 | 2albii 1567 | . . . . . . 7 1c k 1c SIk |
20 | 6, 19 | bitri 240 | . . . . . 6 1c k 1c SIk |
21 | 20 | biimpri 197 | . . . . 5 1c k 1c SIk |
22 | 1cex 4143 | . . . . . . 7 1c | |
23 | 22, 22 | xpkex 4290 | . . . . . 6 1c k 1c |
24 | vex 2863 | . . . . . 6 | |
25 | 23, 24 | inex 4106 | . . . . 5 1c k 1c |
26 | 21, 25 | syl6eqelr 2442 | . . . 4 SIk |
27 | 26 | exlimiv 1634 | . . 3 SIk |
28 | 3, 27 | ax-mp 5 | . 2 SIk |
29 | 2, 28 | vtoclg 2915 | 1 SIk |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wex 1541 wceq 1642 wcel 1710 cvv 2860 cin 3209 csn 3738 copk 4058 1cc1c 4135 k cxpk 4175 SIk csik 4182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-si 4084 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-xpk 4186 df-cnvk 4187 df-sik 4193 |
This theorem is referenced by: sikex 4298 imakexg 4300 pw1exg 4303 imagekexg 4312 siexg 4753 |
Copyright terms: Public domain | W3C validator |