| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > snssg | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) |
| Ref | Expression |
|---|---|
| snssg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2413 |
. 2
| |
| 2 | sneq 3745 |
. . 3
| |
| 3 | 2 | sseq1d 3299 |
. 2
|
| 4 | vex 2863 |
. . 3
| |
| 5 | 4 | snss 3839 |
. 2
|
| 6 | 1, 3, 5 | vtoclbg 2916 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-sn 3742 |
| This theorem is referenced by: snssi 3853 snssd 3854 prssg 3863 snelpwg 4115 elssetkg 4270 nnadjoinpw 4522 spacid 6286 |
| Copyright terms: Public domain | W3C validator |