New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snssi | Unicode version |
Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
snssi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3845 | . 2 | |
2 | 1 | ibi 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wcel 1710 wss 3258 csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-sn 3742 |
This theorem is referenced by: difsnid 3855 pwpw0 3856 sssn 3865 ssunsn2 3866 pwsnALT 3883 snelpwi 4117 dfiota4 4373 nnsucelrlem4 4428 ssfin 4471 fvimacnvi 5403 fsn2 5435 map0 6026 mapsn 6027 spacssnc 6285 spacind 6288 nchoicelem13 6302 |
Copyright terms: Public domain | W3C validator |