New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snssg | GIF version |
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) |
Ref | Expression |
---|---|
snssg | ⊢ (A ∈ V → (A ∈ B ↔ {A} ⊆ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . 2 ⊢ (x = A → (x ∈ B ↔ A ∈ B)) | |
2 | sneq 3745 | . . 3 ⊢ (x = A → {x} = {A}) | |
3 | 2 | sseq1d 3299 | . 2 ⊢ (x = A → ({x} ⊆ B ↔ {A} ⊆ B)) |
4 | vex 2863 | . . 3 ⊢ x ∈ V | |
5 | 4 | snss 3839 | . 2 ⊢ (x ∈ B ↔ {x} ⊆ B) |
6 | 1, 3, 5 | vtoclbg 2916 | 1 ⊢ (A ∈ V → (A ∈ B ↔ {A} ⊆ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-sn 3742 |
This theorem is referenced by: snssi 3853 snssd 3854 prssg 3863 snelpwg 4115 elssetkg 4270 nnadjoinpw 4522 spacid 6286 |
Copyright terms: Public domain | W3C validator |