New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snss | Unicode version |
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
snss.1 |
Ref | Expression |
---|---|
snss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn 3749 | . . . 4 | |
2 | 1 | imbi1i 315 | . . 3 |
3 | 2 | albii 1566 | . 2 |
4 | dfss2 3263 | . 2 | |
5 | snss.1 | . . 3 | |
6 | 5 | clel2 2976 | . 2 |
7 | 3, 4, 6 | 3bitr4ri 269 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wceq 1642 wcel 1710 cvv 2860 wss 3258 csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-sn 3742 |
This theorem is referenced by: snssg 3845 prss 3862 tpss 3872 sspwb 4119 elpw1 4145 nnsucelrlem3 4427 nnsucelr 4429 tfinnn 4535 vfinspeqtncv 4554 brssetsn 4760 fvimacnvi 5403 fvimacnv 5404 fnressn 5439 dfnnc3 5886 mapsn 6027 nc0le1 6217 frecxp 6315 |
Copyright terms: Public domain | W3C validator |