New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  spcimedv Unicode version

Theorem spcimedv 2938
 Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimdv.1
spcimedv.2
Assertion
Ref Expression
spcimedv
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem spcimedv
StepHypRef Expression
1 spcimdv.1 . . . 4
2 spcimedv.2 . . . . 5
32con3d 125 . . . 4
41, 3spcimdv 2936 . . 3
54con2d 107 . 2
6 df-ex 1542 . 2
75, 6syl6ibr 218 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 358  wal 1540  wex 1541   wceq 1642   wcel 1710 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator