New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spcimedv | GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimdv.1 | ⊢ (φ → A ∈ B) |
spcimedv.2 | ⊢ ((φ ∧ x = A) → (χ → ψ)) |
Ref | Expression |
---|---|
spcimedv | ⊢ (φ → (χ → ∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimdv.1 | . . . 4 ⊢ (φ → A ∈ B) | |
2 | spcimedv.2 | . . . . 5 ⊢ ((φ ∧ x = A) → (χ → ψ)) | |
3 | 2 | con3d 125 | . . . 4 ⊢ ((φ ∧ x = A) → (¬ ψ → ¬ χ)) |
4 | 1, 3 | spcimdv 2937 | . . 3 ⊢ (φ → (∀x ¬ ψ → ¬ χ)) |
5 | 4 | con2d 107 | . 2 ⊢ (φ → (χ → ¬ ∀x ¬ ψ)) |
6 | df-ex 1542 | . 2 ⊢ (∃xψ ↔ ¬ ∀x ¬ ψ) | |
7 | 5, 6 | syl6ibr 218 | 1 ⊢ (φ → (χ → ∃xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |