![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sselii | Unicode version |
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseli.1 |
![]() ![]() ![]() ![]() |
sselii.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sselii |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselii.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | sseli.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | sseli 3269 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | ax-mp 8 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: unsneqsn 3887 pw1eqadj 4332 nndisjeq 4429 evenoddnnnul 4514 vfinspss 4551 proj1op 4600 proj2op 4601 enadj 6060 |
Copyright terms: Public domain | W3C validator |