| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pw1eqadj | Unicode version | ||
| Description: A condition for a unit power class to work out to an adjunction. (Contributed by SF, 26-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| pw1eqadj.1 | 
 | 
| pw1eqadj.2 | 
 | 
| Ref | Expression | 
|---|---|
| pw1eqadj | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unieq 3901 | 
. . . . 5
 | |
| 2 | unipw1 4326 | 
. . . . 5
 | |
| 3 | uniun 3911 | 
. . . . 5
 | |
| 4 | 1, 2, 3 | 3eqtr3g 2408 | 
. . . 4
 | 
| 5 | pw1eqadj.2 | 
. . . . . . 7
 | |
| 6 | 5 | unisn 3908 | 
. . . . . 6
 | 
| 7 | pw1ss1c 4159 | 
. . . . . . . 8
 | |
| 8 | ssun2 3428 | 
. . . . . . . . . 10
 | |
| 9 | 5 | snid 3761 | 
. . . . . . . . . 10
 | 
| 10 | 8, 9 | sselii 3271 | 
. . . . . . . . 9
 | 
| 11 | eleq2 2414 | 
. . . . . . . . 9
 | |
| 12 | 10, 11 | mpbiri 224 | 
. . . . . . . 8
 | 
| 13 | 7, 12 | sseldi 3272 | 
. . . . . . 7
 | 
| 14 | el1c 4140 | 
. . . . . . . 8
 | |
| 15 | vex 2863 | 
. . . . . . . . . . . . 13
 | |
| 16 | 15 | unisn 3908 | 
. . . . . . . . . . . 12
 | 
| 17 | 16 | sneqi 3746 | 
. . . . . . . . . . 11
 | 
| 18 | 17 | eqcomi 2357 | 
. . . . . . . . . 10
 | 
| 19 | id 19 | 
. . . . . . . . . 10
 | |
| 20 | unieq 3901 | 
. . . . . . . . . . 11
 | |
| 21 | 20 | sneqd 3747 | 
. . . . . . . . . 10
 | 
| 22 | 18, 19, 21 | 3eqtr4a 2411 | 
. . . . . . . . 9
 | 
| 23 | 22 | exlimiv 1634 | 
. . . . . . . 8
 | 
| 24 | 14, 23 | sylbi 187 | 
. . . . . . 7
 | 
| 25 | 13, 24 | syl 15 | 
. . . . . 6
 | 
| 26 | 6, 25 | syl5eq 2397 | 
. . . . 5
 | 
| 27 | 26 | uneq2d 3419 | 
. . . 4
 | 
| 28 | 4, 27 | eqtrd 2385 | 
. . 3
 | 
| 29 | ssun1 3427 | 
. . . . . 6
 | |
| 30 | sseq2 3294 | 
. . . . . 6
 | |
| 31 | 29, 30 | mpbiri 224 | 
. . . . 5
 | 
| 32 | 31, 7 | syl6ss 3285 | 
. . . 4
 | 
| 33 | eqpw1uni 4331 | 
. . . 4
 | |
| 34 | 32, 33 | syl 15 | 
. . 3
 | 
| 35 | pw1eqadj.1 | 
. . . . 5
 | |
| 36 | 35 | uniex 4318 | 
. . . 4
 | 
| 37 | 5 | uniex 4318 | 
. . . 4
 | 
| 38 | sneq 3745 | 
. . . . . . 7
 | |
| 39 | uneq12 3414 | 
. . . . . . 7
 | |
| 40 | 38, 39 | sylan2 460 | 
. . . . . 6
 | 
| 41 | 40 | eqeq2d 2364 | 
. . . . 5
 | 
| 42 | pw1eq 4144 | 
. . . . . . 7
 | |
| 43 | 42 | eqeq2d 2364 | 
. . . . . 6
 | 
| 44 | 43 | adantr 451 | 
. . . . 5
 | 
| 45 | 38 | eqeq2d 2364 | 
. . . . . 6
 | 
| 46 | 45 | adantl 452 | 
. . . . 5
 | 
| 47 | 41, 44, 46 | 3anbi123d 1252 | 
. . . 4
 | 
| 48 | 36, 37, 47 | spc2ev 2948 | 
. . 3
 | 
| 49 | 28, 34, 25, 48 | syl3anc 1182 | 
. 2
 | 
| 50 | pw1un 4164 | 
. . . . 5
 | |
| 51 | vex 2863 | 
. . . . . . 7
 | |
| 52 | 51 | pw1sn 4166 | 
. . . . . 6
 | 
| 53 | 52 | uneq2i 3416 | 
. . . . 5
 | 
| 54 | 50, 53 | eqtri 2373 | 
. . . 4
 | 
| 55 | pw1eq 4144 | 
. . . . . 6
 | |
| 56 | sneq 3745 | 
. . . . . . 7
 | |
| 57 | uneq12 3414 | 
. . . . . . 7
 | |
| 58 | 56, 57 | sylan2 460 | 
. . . . . 6
 | 
| 59 | 55, 58 | eqeqan12d 2368 | 
. . . . 5
 | 
| 60 | 59 | 3impb 1147 | 
. . . 4
 | 
| 61 | 54, 60 | mpbiri 224 | 
. . 3
 | 
| 62 | 61 | exlimivv 1635 | 
. 2
 | 
| 63 | 49, 62 | impbii 180 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 | 
| This theorem is referenced by: ncfinlower 4484 sfindbl 4531 | 
| Copyright terms: Public domain | W3C validator |