| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ssequn1 | Unicode version | ||
| Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| ssequn1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bicom 191 | 
. . . 4
 | |
| 2 | pm4.72 846 | 
. . . 4
 | |
| 3 | elun 3221 | 
. . . . 5
 | |
| 4 | 3 | bibi1i 305 | 
. . . 4
 | 
| 5 | 1, 2, 4 | 3bitr4i 268 | 
. . 3
 | 
| 6 | 5 | albii 1566 | 
. 2
 | 
| 7 | dfss2 3263 | 
. 2
 | |
| 8 | dfcleq 2347 | 
. 2
 | |
| 9 | 6, 7, 8 | 3bitr4i 268 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 | 
| This theorem is referenced by: ssequn2 3437 undif 3631 unsneqsn 3888 dflec2 6211 | 
| Copyright terms: Public domain | W3C validator |