New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssequn1 | GIF version |
Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssequn1 | ⊢ (A ⊆ B ↔ (A ∪ B) = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 191 | . . . 4 ⊢ ((x ∈ B ↔ (x ∈ A ∨ x ∈ B)) ↔ ((x ∈ A ∨ x ∈ B) ↔ x ∈ B)) | |
2 | pm4.72 846 | . . . 4 ⊢ ((x ∈ A → x ∈ B) ↔ (x ∈ B ↔ (x ∈ A ∨ x ∈ B))) | |
3 | elun 3221 | . . . . 5 ⊢ (x ∈ (A ∪ B) ↔ (x ∈ A ∨ x ∈ B)) | |
4 | 3 | bibi1i 305 | . . . 4 ⊢ ((x ∈ (A ∪ B) ↔ x ∈ B) ↔ ((x ∈ A ∨ x ∈ B) ↔ x ∈ B)) |
5 | 1, 2, 4 | 3bitr4i 268 | . . 3 ⊢ ((x ∈ A → x ∈ B) ↔ (x ∈ (A ∪ B) ↔ x ∈ B)) |
6 | 5 | albii 1566 | . 2 ⊢ (∀x(x ∈ A → x ∈ B) ↔ ∀x(x ∈ (A ∪ B) ↔ x ∈ B)) |
7 | dfss2 3263 | . 2 ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) | |
8 | dfcleq 2347 | . 2 ⊢ ((A ∪ B) = B ↔ ∀x(x ∈ (A ∪ B) ↔ x ∈ B)) | |
9 | 6, 7, 8 | 3bitr4i 268 | 1 ⊢ (A ⊆ B ↔ (A ∪ B) = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∪ cun 3208 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 |
This theorem is referenced by: ssequn2 3437 undif 3631 unsneqsn 3888 dflec2 6211 |
Copyright terms: Public domain | W3C validator |