Proof of Theorem ssofss
Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . . . . . 8
⊢ x ∈
V |
2 | 1 | elcompl 3226 |
. . . . . . 7
⊢ (x ∈ ∼ C ↔ ¬ x
∈ C) |
3 | | ssel 3268 |
. . . . . . . 8
⊢ (A ⊆ C → (x
∈ A
→ x ∈ C)) |
4 | 3 | con3d 125 |
. . . . . . 7
⊢ (A ⊆ C → (¬ x ∈ C → ¬ x
∈ A)) |
5 | 2, 4 | syl5bi 208 |
. . . . . 6
⊢ (A ⊆ C → (x
∈ ∼ C
→ ¬ x ∈ A)) |
6 | 5 | imp 418 |
. . . . 5
⊢ ((A ⊆ C ∧ x ∈ ∼ C) → ¬ x ∈ A) |
7 | 6 | pm2.21d 98 |
. . . 4
⊢ ((A ⊆ C ∧ x ∈ ∼ C) → (x
∈ A
→ x ∈ B)) |
8 | 7 | ralrimiva 2698 |
. . 3
⊢ (A ⊆ C → ∀x ∈ ∼ C(x ∈ A →
x ∈
B)) |
9 | 8 | biantrud 493 |
. 2
⊢ (A ⊆ C → (∀x ∈ C (x ∈ A → x ∈ B) ↔
(∀x
∈ C
(x ∈
A → x ∈ B) ∧ ∀x ∈ ∼ C(x ∈ A →
x ∈
B)))) |
10 | | ralv 2873 |
. . . 4
⊢ (∀x ∈ V (x ∈ A →
x ∈
B) ↔ ∀x(x ∈ A → x ∈ B)) |
11 | | uncompl 4075 |
. . . . 5
⊢ (C ∪ ∼ C)
= V |
12 | 11 | raleqi 2812 |
. . . 4
⊢ (∀x ∈ (C ∪
∼ C)(x ∈ A → x ∈ B) ↔
∀x
∈ V (x
∈ A
→ x ∈ B)) |
13 | | dfss2 3263 |
. . . 4
⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) |
14 | 10, 12, 13 | 3bitr4ri 269 |
. . 3
⊢ (A ⊆ B ↔ ∀x ∈ (C ∪
∼ C)(x ∈ A → x ∈ B)) |
15 | | ralunb 3445 |
. . 3
⊢ (∀x ∈ (C ∪
∼ C)(x ∈ A → x ∈ B) ↔
(∀x
∈ C
(x ∈
A → x ∈ B) ∧ ∀x ∈ ∼ C(x ∈ A →
x ∈
B))) |
16 | 14, 15 | bitri 240 |
. 2
⊢ (A ⊆ B ↔ (∀x ∈ C (x ∈ A → x ∈ B) ∧ ∀x ∈ ∼ C(x ∈ A →
x ∈
B))) |
17 | 9, 16 | syl6rbbr 255 |
1
⊢ (A ⊆ C → (A
⊆ B
↔ ∀x ∈ C (x ∈ A →
x ∈
B))) |