| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > sylan9bbr | Unicode version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| sylan9bbr.1 | 
 | 
| sylan9bbr.2 | 
 | 
| Ref | Expression | 
|---|---|
| sylan9bbr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylan9bbr.1 | 
. . 3
 | |
| 2 | sylan9bbr.2 | 
. . 3
 | |
| 3 | 1, 2 | sylan9bb 680 | 
. 2
 | 
| 4 | 3 | ancoms 439 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: pm5.75 903 sbcom 2089 sbcom2 2114 2mo 2282 2eu6 2289 elssetkg 4270 fconstfv 5457 f1oiso 5500 mpteq12f 5656 mpt2eq123 5662 fmpt2x 5731 sbth 6207 | 
| Copyright terms: Public domain | W3C validator |