New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2mo | Unicode version |
Description: Two equivalent expressions for double "at most one." (Contributed by NM, 2-Feb-2005.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
2mo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 1686 | . . . . . . 7 | |
2 | equequ2 1686 | . . . . . . 7 | |
3 | 1, 2 | bi2anan9 843 | . . . . . 6 |
4 | 3 | imbi2d 307 | . . . . 5 |
5 | 4 | 2albidv 1627 | . . . 4 |
6 | 5 | cbvex2v 2007 | . . 3 |
7 | nfv 1619 | . . . . . . . . 9 | |
8 | nfv 1619 | . . . . . . . . 9 | |
9 | nfs1v 2106 | . . . . . . . . . 10 | |
10 | nfv 1619 | . . . . . . . . . 10 | |
11 | 9, 10 | nfim 1813 | . . . . . . . . 9 |
12 | nfs1v 2106 | . . . . . . . . . . 11 | |
13 | 12 | nfsb 2109 | . . . . . . . . . 10 |
14 | nfv 1619 | . . . . . . . . . 10 | |
15 | 13, 14 | nfim 1813 | . . . . . . . . 9 |
16 | sbequ12 1919 | . . . . . . . . . . 11 | |
17 | sbequ12 1919 | . . . . . . . . . . 11 | |
18 | 16, 17 | sylan9bbr 681 | . . . . . . . . . 10 |
19 | equequ1 1684 | . . . . . . . . . . 11 | |
20 | equequ1 1684 | . . . . . . . . . . 11 | |
21 | 19, 20 | bi2anan9 843 | . . . . . . . . . 10 |
22 | 18, 21 | imbi12d 311 | . . . . . . . . 9 |
23 | 7, 8, 11, 15, 22 | cbval2 2004 | . . . . . . . 8 |
24 | 23 | biimpi 186 | . . . . . . 7 |
25 | 24 | ancli 534 | . . . . . 6 |
26 | alcom 1737 | . . . . . . . . 9 | |
27 | 8, 15 | aaan 1884 | . . . . . . . . . 10 |
28 | 27 | albii 1566 | . . . . . . . . 9 |
29 | 26, 28 | bitri 240 | . . . . . . . 8 |
30 | 29 | albii 1566 | . . . . . . 7 |
31 | nfv 1619 | . . . . . . . 8 | |
32 | 11 | nfal 1842 | . . . . . . . 8 |
33 | 31, 32 | aaan 1884 | . . . . . . 7 |
34 | 30, 33 | bitri 240 | . . . . . 6 |
35 | 25, 34 | sylibr 203 | . . . . 5 |
36 | prth 554 | . . . . . . . 8 | |
37 | equtr2 1688 | . . . . . . . . . 10 | |
38 | equtr2 1688 | . . . . . . . . . 10 | |
39 | 37, 38 | anim12i 549 | . . . . . . . . 9 |
40 | 39 | an4s 799 | . . . . . . . 8 |
41 | 36, 40 | syl6 29 | . . . . . . 7 |
42 | 41 | 2alimi 1560 | . . . . . 6 |
43 | 42 | 2alimi 1560 | . . . . 5 |
44 | 35, 43 | syl 15 | . . . 4 |
45 | 44 | exlimivv 1635 | . . 3 |
46 | 6, 45 | sylbir 204 | . 2 |
47 | alrot4 1739 | . . . . 5 | |
48 | pm3.21 435 | . . . . . . . . . . . 12 | |
49 | 48 | imim1d 69 | . . . . . . . . . . 11 |
50 | 13, 49 | alimd 1764 | . . . . . . . . . 10 |
51 | 9, 50 | alimd 1764 | . . . . . . . . 9 |
52 | 51 | com12 27 | . . . . . . . 8 |
53 | 52 | alimi 1559 | . . . . . . 7 |
54 | exim 1575 | . . . . . . 7 | |
55 | 53, 54 | syl 15 | . . . . . 6 |
56 | 55 | alimi 1559 | . . . . 5 |
57 | 47, 56 | sylbi 187 | . . . 4 |
58 | exim 1575 | . . . 4 | |
59 | 57, 58 | syl 15 | . . 3 |
60 | alnex 1543 | . . . . . 6 | |
61 | 60 | albii 1566 | . . . . 5 |
62 | alnex 1543 | . . . . 5 | |
63 | 61, 62 | bitri 240 | . . . 4 |
64 | nfv 1619 | . . . . . . 7 | |
65 | nfv 1619 | . . . . . . 7 | |
66 | 9 | nfn 1793 | . . . . . . 7 |
67 | 13 | nfn 1793 | . . . . . . 7 |
68 | 18 | notbid 285 | . . . . . . 7 |
69 | 64, 65, 66, 67, 68 | cbval2 2004 | . . . . . 6 |
70 | pm2.21 100 | . . . . . . 7 | |
71 | 70 | 2alimi 1560 | . . . . . 6 |
72 | 69, 71 | sylbir 204 | . . . . 5 |
73 | 19.8a 1756 | . . . . . 6 | |
74 | 73 | 19.23bi 1759 | . . . . 5 |
75 | 72, 74 | syl 15 | . . . 4 |
76 | 63, 75 | sylbir 204 | . . 3 |
77 | 59, 76 | pm2.61d1 151 | . 2 |
78 | 46, 77 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: 2mos 2283 2eu6 2289 |
Copyright terms: Public domain | W3C validator |