New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylan9bb | Unicode version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | |
sylan9bb.2 |
Ref | Expression |
---|---|
sylan9bb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 | |
2 | 1 | adantr 451 | . 2 |
3 | sylan9bb.2 | . . 3 | |
4 | 3 | adantl 452 | . 2 |
5 | 2, 4 | bitrd 244 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylan9bbr 681 bi2anan9 843 baibd 875 rbaibd 876 syl3an9b 1250 nanbi12 1297 sbcom 2089 sbcom2 2114 ax11eq 2193 ax11el 2194 eqeq12 2365 eleq12 2415 sbhypf 2904 ceqsrex2v 2974 sseq12 3294 rexprg 3776 rextpg 3778 otkelins2kg 4253 otkelins3kg 4254 opkelcokg 4261 sfintfin 4532 breq12 4644 opelopabg 4705 brabg 4706 opelopab2 4707 ralxpf 4827 feq23 5213 f00 5249 fconstg 5251 f1oeq23 5284 f1o00 5317 f1oiso 5499 caovord 5629 caovord3 5631 cbvmpt2x 5678 ovmpt2x 5712 composefn 5818 fnfullfun 5858 elce 6175 ce2 6192 |
Copyright terms: Public domain | W3C validator |