New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > enmap1lem5 | Unicode version |
Description: Lemma for enmap2 6068. Calculate the range of . (Contributed by SF, 3-Mar-2015.) |
Ref | Expression |
---|---|
enmap1lem5.1 |
Ref | Expression |
---|---|
enmap1lem5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enmap1lem5.1 | . . . 4 | |
2 | 1 | enmap1lem2 6070 | . . 3 |
3 | coeq2 4875 | . . . . . . 7 | |
4 | vex 2862 | . . . . . . . 8 | |
5 | vex 2862 | . . . . . . . 8 | |
6 | 4, 5 | coex 4750 | . . . . . . 7 |
7 | 3, 1, 6 | fvmpt 5700 | . . . . . 6 |
8 | 7 | adantl 452 | . . . . 5 |
9 | f1of 5287 | . . . . . . 7 | |
10 | elmapi 6016 | . . . . . . 7 | |
11 | fco 5231 | . . . . . . 7 | |
12 | 9, 10, 11 | syl2an 463 | . . . . . 6 |
13 | f1ofo 5293 | . . . . . . . . 9 | |
14 | forn 5272 | . . . . . . . . 9 | |
15 | 13, 14 | syl 15 | . . . . . . . 8 |
16 | 4 | rnex 5107 | . . . . . . . 8 |
17 | 15, 16 | syl6eqelr 2442 | . . . . . . 7 |
18 | elovex2 5650 | . . . . . . 7 | |
19 | elmapg 6012 | . . . . . . . 8 | |
20 | 6, 19 | mp3an3 1266 | . . . . . . 7 |
21 | 17, 18, 20 | syl2an 463 | . . . . . 6 |
22 | 12, 21 | mpbird 223 | . . . . 5 |
23 | 8, 22 | eqeltrd 2427 | . . . 4 |
24 | 23 | ralrimiva 2697 | . . 3 |
25 | fnfvrnss 5429 | . . 3 | |
26 | 2, 24, 25 | sylancr 644 | . 2 |
27 | f1ocnv 5299 | . . . . . . . . . . 11 | |
28 | f1of 5287 | . . . . . . . . . . 11 | |
29 | 27, 28 | syl 15 | . . . . . . . . . 10 |
30 | elmapi 6016 | . . . . . . . . . 10 | |
31 | fco 5231 | . . . . . . . . . 10 | |
32 | 29, 30, 31 | syl2an 463 | . . . . . . . . 9 |
33 | f1odm 5290 | . . . . . . . . . . 11 | |
34 | 4 | dmex 5106 | . . . . . . . . . . 11 |
35 | 33, 34 | syl6eqelr 2442 | . . . . . . . . . 10 |
36 | elovex2 5650 | . . . . . . . . . 10 | |
37 | 4 | cnvex 5102 | . . . . . . . . . . . 12 |
38 | 37, 5 | coex 4750 | . . . . . . . . . . 11 |
39 | elmapg 6012 | . . . . . . . . . . 11 | |
40 | 38, 39 | mp3an3 1266 | . . . . . . . . . 10 |
41 | 35, 36, 40 | syl2an 463 | . . . . . . . . 9 |
42 | 32, 41 | mpbird 223 | . . . . . . . 8 |
43 | coeq2 4875 | . . . . . . . . 9 | |
44 | 4, 38 | coex 4750 | . . . . . . . . 9 |
45 | 43, 1, 44 | fvmpt 5700 | . . . . . . . 8 |
46 | 42, 45 | syl 15 | . . . . . . 7 |
47 | coass 5097 | . . . . . . . 8 | |
48 | f1ococnv2 5309 | . . . . . . . . . 10 | |
49 | 48 | coeq1d 4878 | . . . . . . . . 9 |
50 | fcoi2 5241 | . . . . . . . . . 10 | |
51 | 30, 50 | syl 15 | . . . . . . . . 9 |
52 | 49, 51 | sylan9eq 2405 | . . . . . . . 8 |
53 | 47, 52 | syl5eqr 2399 | . . . . . . 7 |
54 | 46, 53 | eqtrd 2385 | . . . . . 6 |
55 | fnbrfvb 5358 | . . . . . . 7 | |
56 | 2, 42, 55 | sylancr 644 | . . . . . 6 |
57 | 54, 56 | mpbid 201 | . . . . 5 |
58 | brelrn 4960 | . . . . 5 | |
59 | 57, 58 | syl 15 | . . . 4 |
60 | 59 | ex 423 | . . 3 |
61 | 60 | ssrdv 3278 | . 2 |
62 | 26, 61 | eqssd 3289 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wral 2614 cvv 2859 wss 3257 class class class wbr 4639 ccom 4721 cid 4763 ccnv 4771 cdm 4772 crn 4773 cres 4774 wfn 4776 wf 4777 wfo 4779 wf1o 4780 cfv 4781 (class class class)co 5525 cmpt 5651 cmap 5999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt 5652 df-mpt2 5654 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-map 6001 |
This theorem is referenced by: enmap1 6074 |
Copyright terms: Public domain | W3C validator |