New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > enmap1lem5 | Unicode version |
Description: Lemma for enmap2 6069. Calculate the range of . (Contributed by SF, 3-Mar-2015.) |
Ref | Expression |
---|---|
enmap1lem5.1 |
Ref | Expression |
---|---|
enmap1lem5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enmap1lem5.1 | . . . 4 | |
2 | 1 | enmap1lem2 6071 | . . 3 |
3 | coeq2 4876 | . . . . . . 7 | |
4 | vex 2863 | . . . . . . . 8 | |
5 | vex 2863 | . . . . . . . 8 | |
6 | 4, 5 | coex 4751 | . . . . . . 7 |
7 | 3, 1, 6 | fvmpt 5701 | . . . . . 6 |
8 | 7 | adantl 452 | . . . . 5 |
9 | f1of 5288 | . . . . . . 7 | |
10 | elmapi 6017 | . . . . . . 7 | |
11 | fco 5232 | . . . . . . 7 | |
12 | 9, 10, 11 | syl2an 463 | . . . . . 6 |
13 | f1ofo 5294 | . . . . . . . . 9 | |
14 | forn 5273 | . . . . . . . . 9 | |
15 | 13, 14 | syl 15 | . . . . . . . 8 |
16 | 4 | rnex 5108 | . . . . . . . 8 |
17 | 15, 16 | syl6eqelr 2442 | . . . . . . 7 |
18 | elovex2 5651 | . . . . . . 7 | |
19 | elmapg 6013 | . . . . . . . 8 | |
20 | 6, 19 | mp3an3 1266 | . . . . . . 7 |
21 | 17, 18, 20 | syl2an 463 | . . . . . 6 |
22 | 12, 21 | mpbird 223 | . . . . 5 |
23 | 8, 22 | eqeltrd 2427 | . . . 4 |
24 | 23 | ralrimiva 2698 | . . 3 |
25 | fnfvrnss 5430 | . . 3 | |
26 | 2, 24, 25 | sylancr 644 | . 2 |
27 | f1ocnv 5300 | . . . . . . . . . . 11 | |
28 | f1of 5288 | . . . . . . . . . . 11 | |
29 | 27, 28 | syl 15 | . . . . . . . . . 10 |
30 | elmapi 6017 | . . . . . . . . . 10 | |
31 | fco 5232 | . . . . . . . . . 10 | |
32 | 29, 30, 31 | syl2an 463 | . . . . . . . . 9 |
33 | f1odm 5291 | . . . . . . . . . . 11 | |
34 | 4 | dmex 5107 | . . . . . . . . . . 11 |
35 | 33, 34 | syl6eqelr 2442 | . . . . . . . . . 10 |
36 | elovex2 5651 | . . . . . . . . . 10 | |
37 | 4 | cnvex 5103 | . . . . . . . . . . . 12 |
38 | 37, 5 | coex 4751 | . . . . . . . . . . 11 |
39 | elmapg 6013 | . . . . . . . . . . 11 | |
40 | 38, 39 | mp3an3 1266 | . . . . . . . . . 10 |
41 | 35, 36, 40 | syl2an 463 | . . . . . . . . 9 |
42 | 32, 41 | mpbird 223 | . . . . . . . 8 |
43 | coeq2 4876 | . . . . . . . . 9 | |
44 | 4, 38 | coex 4751 | . . . . . . . . 9 |
45 | 43, 1, 44 | fvmpt 5701 | . . . . . . . 8 |
46 | 42, 45 | syl 15 | . . . . . . 7 |
47 | coass 5098 | . . . . . . . 8 | |
48 | f1ococnv2 5310 | . . . . . . . . . 10 | |
49 | 48 | coeq1d 4879 | . . . . . . . . 9 |
50 | fcoi2 5242 | . . . . . . . . . 10 | |
51 | 30, 50 | syl 15 | . . . . . . . . 9 |
52 | 49, 51 | sylan9eq 2405 | . . . . . . . 8 |
53 | 47, 52 | syl5eqr 2399 | . . . . . . 7 |
54 | 46, 53 | eqtrd 2385 | . . . . . 6 |
55 | fnbrfvb 5359 | . . . . . . 7 | |
56 | 2, 42, 55 | sylancr 644 | . . . . . 6 |
57 | 54, 56 | mpbid 201 | . . . . 5 |
58 | brelrn 4961 | . . . . 5 | |
59 | 57, 58 | syl 15 | . . . 4 |
60 | 59 | ex 423 | . . 3 |
61 | 60 | ssrdv 3279 | . 2 |
62 | 26, 61 | eqssd 3290 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wral 2615 cvv 2860 wss 3258 class class class wbr 4640 ccom 4722 cid 4764 ccnv 4772 cdm 4773 crn 4774 cres 4775 wfn 4777 wf 4778 wfo 4780 wf1o 4781 cfv 4782 (class class class)co 5526 cmpt 5652 cmap 6000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-map 6002 |
This theorem is referenced by: enmap1 6075 |
Copyright terms: Public domain | W3C validator |