NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enmap1lem5 Unicode version

Theorem enmap1lem5 6073
Description: Lemma for enmap2 6068. Calculate the range of . (Contributed by SF, 3-Mar-2015.)
Hypothesis
Ref Expression
enmap1lem5.1
Assertion
Ref Expression
enmap1lem5
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   (,)   ()   (,)

Proof of Theorem enmap1lem5
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 enmap1lem5.1 . . . 4
21enmap1lem2 6070 . . 3
3 coeq2 4875 . . . . . . 7
4 vex 2862 . . . . . . . 8
5 vex 2862 . . . . . . . 8
64, 5coex 4750 . . . . . . 7
73, 1, 6fvmpt 5700 . . . . . 6
87adantl 452 . . . . 5
9 f1of 5287 . . . . . . 7
10 elmapi 6016 . . . . . . 7
11 fco 5231 . . . . . . 7
129, 10, 11syl2an 463 . . . . . 6
13 f1ofo 5293 . . . . . . . . 9
14 forn 5272 . . . . . . . . 9
1513, 14syl 15 . . . . . . . 8
164rnex 5107 . . . . . . . 8
1715, 16syl6eqelr 2442 . . . . . . 7
18 elovex2 5650 . . . . . . 7
19 elmapg 6012 . . . . . . . 8
206, 19mp3an3 1266 . . . . . . 7
2117, 18, 20syl2an 463 . . . . . 6
2212, 21mpbird 223 . . . . 5
238, 22eqeltrd 2427 . . . 4
2423ralrimiva 2697 . . 3
25 fnfvrnss 5429 . . 3
262, 24, 25sylancr 644 . 2
27 f1ocnv 5299 . . . . . . . . . . 11
28 f1of 5287 . . . . . . . . . . 11
2927, 28syl 15 . . . . . . . . . 10
30 elmapi 6016 . . . . . . . . . 10
31 fco 5231 . . . . . . . . . 10
3229, 30, 31syl2an 463 . . . . . . . . 9
33 f1odm 5290 . . . . . . . . . . 11
344dmex 5106 . . . . . . . . . . 11
3533, 34syl6eqelr 2442 . . . . . . . . . 10
36 elovex2 5650 . . . . . . . . . 10
374cnvex 5102 . . . . . . . . . . . 12
3837, 5coex 4750 . . . . . . . . . . 11
39 elmapg 6012 . . . . . . . . . . 11
4038, 39mp3an3 1266 . . . . . . . . . 10
4135, 36, 40syl2an 463 . . . . . . . . 9
4232, 41mpbird 223 . . . . . . . 8
43 coeq2 4875 . . . . . . . . 9
444, 38coex 4750 . . . . . . . . 9
4543, 1, 44fvmpt 5700 . . . . . . . 8
4642, 45syl 15 . . . . . . 7
47 coass 5097 . . . . . . . 8
48 f1ococnv2 5309 . . . . . . . . . 10
4948coeq1d 4878 . . . . . . . . 9
50 fcoi2 5241 . . . . . . . . . 10
5130, 50syl 15 . . . . . . . . 9
5249, 51sylan9eq 2405 . . . . . . . 8
5347, 52syl5eqr 2399 . . . . . . 7
5446, 53eqtrd 2385 . . . . . 6
55 fnbrfvb 5358 . . . . . . 7
562, 42, 55sylancr 644 . . . . . 6
5754, 56mpbid 201 . . . . 5
58 brelrn 4960 . . . . 5
5957, 58syl 15 . . . 4
6059ex 423 . . 3
6160ssrdv 3278 . 2
6226, 61eqssd 3289 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710  wral 2614  cvv 2859   wss 3257   class class class wbr 4639   ccom 4721   cid 4763  ccnv 4771   cdm 4772   crn 4773   cres 4774   wfn 4776  wf 4777  wfo 4779  wf1o 4780  cfv 4781  (class class class)co 5525   cmpt 5651   cmap 5999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-swap 4724  df-sset 4725  df-co 4726  df-ima 4727  df-si 4728  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-f 4791  df-f1 4792  df-fo 4793  df-f1o 4794  df-fv 4795  df-2nd 4797  df-ov 5526  df-oprab 5528  df-mpt 5652  df-mpt2 5654  df-txp 5736  df-ins2 5750  df-ins3 5752  df-image 5754  df-ins4 5756  df-si3 5758  df-funs 5760  df-map 6001
This theorem is referenced by:  enmap1  6074
  Copyright terms: Public domain W3C validator