![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sylnibr | Unicode version |
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnibr.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylnibr.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylnibr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnibr.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylnibr.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 193 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sylnib 295 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: ncfinraise 4481 tfinltfin 4501 sfindbl 4530 tfinnn 4534 vfinncvntsp 4549 nnc3n3p1 6278 nnc3n3p2 6279 nnc3p1n3p2 6280 nchoicelem2 6290 |
Copyright terms: Public domain | W3C validator |