| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > iotanul | Unicode version | ||
| Description: Theorem 8.22 in [Quine] p. 57.  This theorem is the result if there
       isn't exactly one  | 
| Ref | Expression | 
|---|---|
| iotanul | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-eu 2208 | 
. 2
 | |
| 2 | dfiota2 4341 | 
. . 3
 | |
| 3 | alnex 1543 | 
. . . . . 6
 | |
| 4 | ax-1 6 | 
. . . . . . . . . . 11
 | |
| 5 | eqidd 2354 | 
. . . . . . . . . . 11
 | |
| 6 | 4, 5 | impbid1 194 | 
. . . . . . . . . 10
 | 
| 7 | 6 | con2bid 319 | 
. . . . . . . . 9
 | 
| 8 | 7 | alimi 1559 | 
. . . . . . . 8
 | 
| 9 | abbib 2464 | 
. . . . . . . 8
 | |
| 10 | 8, 9 | sylibr 203 | 
. . . . . . 7
 | 
| 11 | dfnul2 3553 | 
. . . . . . 7
 | |
| 12 | 10, 11 | syl6eqr 2403 | 
. . . . . 6
 | 
| 13 | 3, 12 | sylbir 204 | 
. . . . 5
 | 
| 14 | 13 | unieqd 3903 | 
. . . 4
 | 
| 15 | uni0 3919 | 
. . . 4
 | |
| 16 | 14, 15 | syl6eq 2401 | 
. . 3
 | 
| 17 | 2, 16 | syl5eq 2397 | 
. 2
 | 
| 18 | 1, 17 | sylnbi 297 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-uni 3893 df-iota 4340 | 
| This theorem is referenced by: iotassuni 4356 iotaex 4357 dfiota3 4371 dfiota4 4373 fvprc 5326 | 
| Copyright terms: Public domain | W3C validator |