New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unrab | Unicode version |
Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
unrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2624 | . . 3 | |
2 | df-rab 2624 | . . 3 | |
3 | 1, 2 | uneq12i 3417 | . 2 |
4 | df-rab 2624 | . . 3 | |
5 | unab 3522 | . . . 4 | |
6 | andi 837 | . . . . 5 | |
7 | 6 | abbii 2466 | . . . 4 |
8 | 5, 7 | eqtr4i 2376 | . . 3 |
9 | 4, 8 | eqtr4i 2376 | . 2 |
10 | 3, 9 | eqtr4i 2376 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wo 357 wa 358 wceq 1642 wcel 1710 cab 2339 crab 2619 cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: rabxm 3574 opeq 4620 |
Copyright terms: Public domain | W3C validator |