| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > unrab | GIF version | ||
| Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| unrab | ⊢ ({x ∈ A ∣ φ} ∪ {x ∈ A ∣ ψ}) = {x ∈ A ∣ (φ ∨ ψ)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2624 | . . 3 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
| 2 | df-rab 2624 | . . 3 ⊢ {x ∈ A ∣ ψ} = {x ∣ (x ∈ A ∧ ψ)} | |
| 3 | 1, 2 | uneq12i 3417 | . 2 ⊢ ({x ∈ A ∣ φ} ∪ {x ∈ A ∣ ψ}) = ({x ∣ (x ∈ A ∧ φ)} ∪ {x ∣ (x ∈ A ∧ ψ)}) |
| 4 | df-rab 2624 | . . 3 ⊢ {x ∈ A ∣ (φ ∨ ψ)} = {x ∣ (x ∈ A ∧ (φ ∨ ψ))} | |
| 5 | unab 3522 | . . . 4 ⊢ ({x ∣ (x ∈ A ∧ φ)} ∪ {x ∣ (x ∈ A ∧ ψ)}) = {x ∣ ((x ∈ A ∧ φ) ∨ (x ∈ A ∧ ψ))} | |
| 6 | andi 837 | . . . . 5 ⊢ ((x ∈ A ∧ (φ ∨ ψ)) ↔ ((x ∈ A ∧ φ) ∨ (x ∈ A ∧ ψ))) | |
| 7 | 6 | abbii 2466 | . . . 4 ⊢ {x ∣ (x ∈ A ∧ (φ ∨ ψ))} = {x ∣ ((x ∈ A ∧ φ) ∨ (x ∈ A ∧ ψ))} |
| 8 | 5, 7 | eqtr4i 2376 | . . 3 ⊢ ({x ∣ (x ∈ A ∧ φ)} ∪ {x ∣ (x ∈ A ∧ ψ)}) = {x ∣ (x ∈ A ∧ (φ ∨ ψ))} |
| 9 | 4, 8 | eqtr4i 2376 | . 2 ⊢ {x ∈ A ∣ (φ ∨ ψ)} = ({x ∣ (x ∈ A ∧ φ)} ∪ {x ∣ (x ∈ A ∧ ψ)}) |
| 10 | 3, 9 | eqtr4i 2376 | 1 ⊢ ({x ∈ A ∣ φ} ∪ {x ∈ A ∣ ψ}) = {x ∈ A ∣ (φ ∨ ψ)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2619 ∪ cun 3208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
| This theorem is referenced by: rabxm 3574 opeq 4620 |
| Copyright terms: Public domain | W3C validator |