New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unab | Unicode version |
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbor 2066 | . . 3 | |
2 | df-clab 2340 | . . 3 | |
3 | df-clab 2340 | . . . 4 | |
4 | df-clab 2340 | . . . 4 | |
5 | 3, 4 | orbi12i 507 | . . 3 |
6 | 1, 2, 5 | 3bitr4ri 269 | . 2 |
7 | 6 | uneqri 3406 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wo 357 wceq 1642 wsb 1648 wcel 1710 cab 2339 cun 3207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 |
This theorem is referenced by: unrab 3526 rabun2 3534 dfif6 3665 nnc0suc 4412 nncaddccl 4419 preaddccan2lem1 4454 ltfintrilem1 4465 nnadjoin 4520 tfinnn 4534 phiun 4614 unopab 4638 clos1basesuc 5882 leconnnc 6218 addccan2nclem2 6264 nchoicelem16 6304 |
Copyright terms: Public domain | W3C validator |