| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 19.21tOLD | GIF version | ||
| Description: Obsolete proof of 19.21t 1795 as of 30-Dec-2017. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 19.21tOLD | ⊢ (Ⅎxφ → (∀x(φ → ψ) ↔ (φ → ∀xψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . . 4 ⊢ (Ⅎxφ → Ⅎxφ) | |
| 2 | 1 | nfrd 1763 | . . 3 ⊢ (Ⅎxφ → (φ → ∀xφ)) |
| 3 | alim 1558 | . . 3 ⊢ (∀x(φ → ψ) → (∀xφ → ∀xψ)) | |
| 4 | 2, 3 | syl9 66 | . 2 ⊢ (Ⅎxφ → (∀x(φ → ψ) → (φ → ∀xψ))) |
| 5 | nfa1 1788 | . . . . . 6 ⊢ Ⅎx∀xψ | |
| 6 | 5 | a1i 10 | . . . . 5 ⊢ (Ⅎxφ → Ⅎx∀xψ) |
| 7 | 1, 6 | nfimd 1808 | . . . 4 ⊢ (Ⅎxφ → Ⅎx(φ → ∀xψ)) |
| 8 | 7 | nfrd 1763 | . . 3 ⊢ (Ⅎxφ → ((φ → ∀xψ) → ∀x(φ → ∀xψ))) |
| 9 | sp 1747 | . . . . 5 ⊢ (∀xψ → ψ) | |
| 10 | 9 | imim2i 13 | . . . 4 ⊢ ((φ → ∀xψ) → (φ → ψ)) |
| 11 | 10 | alimi 1559 | . . 3 ⊢ (∀x(φ → ∀xψ) → ∀x(φ → ψ)) |
| 12 | 8, 11 | syl6 29 | . 2 ⊢ (Ⅎxφ → ((φ → ∀xψ) → ∀x(φ → ψ))) |
| 13 | 4, 12 | impbid 183 | 1 ⊢ (Ⅎxφ → (∀x(φ → ψ) ↔ (φ → ∀xψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |