New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfa1 | GIF version |
Description: x is not free in ∀xφ. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfa1 | ⊢ Ⅎx∀xφ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1786 | . 2 ⊢ (∀xφ → ∀x∀xφ) | |
2 | 1 | nfi 1551 | 1 ⊢ Ⅎx∀xφ |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: a5i 1789 nfnf1 1790 nfimdOLD 1809 19.12 1847 nfa2 1855 nfia1 1856 19.21tOLD 1863 nf2 1866 19.38OLD 1874 equs5a 1887 nfald2 1972 spimt 1974 ax11v2 1992 equs5 1996 ax15 2021 sbf2 2028 nfsb4t 2080 sb56 2098 sbal1 2126 exsb 2130 nfeu1 2214 eupickbi 2270 moexex 2273 2eu1 2284 2eu4 2287 exists2 2294 axi12 2333 nfaba1 2495 nfra1 2665 ceqsalg 2884 csbie2t 3181 sbcnestgf 3184 dfnfc2 3910 ncfinlower 4484 copsex2t 4609 mosubopt 4613 ssopab2 4713 fv3 5342 fnoprabg 5586 mpteq12f 5656 |
Copyright terms: Public domain | W3C validator |