New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfa1 | GIF version |
Description: x is not free in ∀xφ. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfa1 | ⊢ Ⅎx∀xφ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1786 | . 2 ⊢ (∀xφ → ∀x∀xφ) | |
2 | 1 | nfi 1551 | 1 ⊢ Ⅎx∀xφ |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: a5i 1789 nfnf1 1790 nfimdOLD 1809 19.12 1847 nfa2 1855 nfia1 1856 19.21tOLD 1863 nf2 1866 19.38OLD 1874 equs5a 1887 nfald2 1972 spimt 1974 ax11v2 1992 equs5 1996 ax15 2021 sbf2 2028 nfsb4t 2080 sb56 2098 sbal1 2126 exsb 2130 nfeu1 2214 eupickbi 2270 moexex 2273 2eu1 2284 2eu4 2287 exists2 2294 axi12 2333 nfaba1 2494 nfra1 2664 ceqsalg 2883 csbie2t 3180 sbcnestgf 3183 dfnfc2 3909 ncfinlower 4483 copsex2t 4608 mosubopt 4612 ssopab2 4712 fv3 5341 fnoprabg 5585 mpteq12f 5655 |
Copyright terms: Public domain | W3C validator |