NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.29 GIF version

Theorem 19.29 1596
Description: Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
19.29 ((xφ xψ) → x(φ ψ))

Proof of Theorem 19.29
StepHypRef Expression
1 pm3.2 434 . . . 4 (φ → (ψ → (φ ψ)))
21alimi 1559 . . 3 (xφx(ψ → (φ ψ)))
3 exim 1575 . . 3 (x(ψ → (φ ψ)) → (xψx(φ ψ)))
42, 3syl 15 . 2 (xφ → (xψx(φ ψ)))
54imp 418 1 ((xφ xψ) → x(φ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  19.29r  1597  19.29x  1599  equs4  1959  equvini  1987  fnfrec  6321
  Copyright terms: Public domain W3C validator