New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.29 | GIF version |
Description: Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
19.29 | ⊢ ((∀xφ ∧ ∃xψ) → ∃x(φ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 434 | . . . 4 ⊢ (φ → (ψ → (φ ∧ ψ))) | |
2 | 1 | alimi 1559 | . . 3 ⊢ (∀xφ → ∀x(ψ → (φ ∧ ψ))) |
3 | exim 1575 | . . 3 ⊢ (∀x(ψ → (φ ∧ ψ)) → (∃xψ → ∃x(φ ∧ ψ))) | |
4 | 2, 3 | syl 15 | . 2 ⊢ (∀xφ → (∃xψ → ∃x(φ ∧ ψ))) |
5 | 4 | imp 418 | 1 ⊢ ((∀xφ ∧ ∃xψ) → ∃x(φ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: 19.29r 1597 19.29x 1599 equs4 1959 equvini 1987 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |