New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.30 | GIF version |
Description: Theorem 19.30 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
19.30 | ⊢ (∀x(φ ∨ ψ) → (∀xφ ∨ ∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnal 1574 | . . 3 ⊢ (∃x ¬ φ ↔ ¬ ∀xφ) | |
2 | exim 1575 | . . 3 ⊢ (∀x(¬ φ → ψ) → (∃x ¬ φ → ∃xψ)) | |
3 | 1, 2 | syl5bir 209 | . 2 ⊢ (∀x(¬ φ → ψ) → (¬ ∀xφ → ∃xψ)) |
4 | df-or 359 | . . 3 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
5 | 4 | albii 1566 | . 2 ⊢ (∀x(φ ∨ ψ) ↔ ∀x(¬ φ → ψ)) |
6 | df-or 359 | . 2 ⊢ ((∀xφ ∨ ∃xψ) ↔ (¬ ∀xφ → ∃xψ)) | |
7 | 3, 5, 6 | 3imtr4i 257 | 1 ⊢ (∀x(φ ∨ ψ) → (∀xφ ∨ ∃xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-or 359 df-ex 1542 |
This theorem is referenced by: 19.33b 1608 |
Copyright terms: Public domain | W3C validator |