NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.30 GIF version

Theorem 19.30 1604
Description: Theorem 19.30 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
19.30 (x(φ ψ) → (xφ xψ))

Proof of Theorem 19.30
StepHypRef Expression
1 exnal 1574 . . 3 (x ¬ φ ↔ ¬ xφ)
2 exim 1575 . . 3 (xφψ) → (x ¬ φxψ))
31, 2syl5bir 209 . 2 (xφψ) → (¬ xφxψ))
4 df-or 359 . . 3 ((φ ψ) ↔ (¬ φψ))
54albii 1566 . 2 (x(φ ψ) ↔ xφψ))
6 df-or 359 . 2 ((xφ xψ) ↔ (¬ xφxψ))
73, 5, 63imtr4i 257 1 (x(φ ψ) → (xφ xψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-or 359  df-ex 1542
This theorem is referenced by:  19.33b  1608
  Copyright terms: Public domain W3C validator