New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.25 | GIF version |
Description: Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.25 | ⊢ (∀y∃x(φ → ψ) → (∃y∀xφ → ∃y∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1600 | . . . 4 ⊢ (∃x(φ → ψ) ↔ (∀xφ → ∃xψ)) | |
2 | 1 | biimpi 186 | . . 3 ⊢ (∃x(φ → ψ) → (∀xφ → ∃xψ)) |
3 | 2 | alimi 1559 | . 2 ⊢ (∀y∃x(φ → ψ) → ∀y(∀xφ → ∃xψ)) |
4 | exim 1575 | . 2 ⊢ (∀y(∀xφ → ∃xψ) → (∃y∀xφ → ∃y∃xψ)) | |
5 | 3, 4 | syl 15 | 1 ⊢ (∀y∃x(φ → ψ) → (∃y∀xφ → ∃y∃xψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |