| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 19.35ri | GIF version | ||
| Description: Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.35ri.1 | ⊢ (∀xφ → ∃xψ) |
| Ref | Expression |
|---|---|
| 19.35ri | ⊢ ∃x(φ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35ri.1 | . 2 ⊢ (∀xφ → ∃xψ) | |
| 2 | 19.35 1600 | . 2 ⊢ (∃x(φ → ψ) ↔ (∀xφ → ∃xψ)) | |
| 3 | 1, 2 | mpbir 200 | 1 ⊢ ∃x(φ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
| This theorem is referenced by: exiftruOLD 1658 qexmid 1886 |
| Copyright terms: Public domain | W3C validator |