New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.35i | GIF version |
Description: Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.35i.1 | ⊢ ∃x(φ → ψ) |
Ref | Expression |
---|---|
19.35i | ⊢ (∀xφ → ∃xψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35i.1 | . 2 ⊢ ∃x(φ → ψ) | |
2 | 19.35 1600 | . 2 ⊢ (∃x(φ → ψ) ↔ (∀xφ → ∃xψ)) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ (∀xφ → ∃xψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: 19.2 1659 spimeh 1667 cbv3hv 1850 |
Copyright terms: Public domain | W3C validator |