New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.9tOLD | GIF version |
Description: Obsolete proof of 19.9t 1779 as of 30-Dec-2017. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.)(New usage is discouraged.) |
Ref | Expression |
---|---|
19.9tOLD | ⊢ (Ⅎxφ → (∃xφ ↔ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1542 | . . 3 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
2 | id 19 | . . . . . 6 ⊢ (Ⅎxφ → Ⅎxφ) | |
3 | 2 | nfnd 1791 | . . . . 5 ⊢ (Ⅎxφ → Ⅎx ¬ φ) |
4 | 3 | nfrd 1763 | . . . 4 ⊢ (Ⅎxφ → (¬ φ → ∀x ¬ φ)) |
5 | 4 | con1d 116 | . . 3 ⊢ (Ⅎxφ → (¬ ∀x ¬ φ → φ)) |
6 | 1, 5 | syl5bi 208 | . 2 ⊢ (Ⅎxφ → (∃xφ → φ)) |
7 | 19.8a 1756 | . 2 ⊢ (φ → ∃xφ) | |
8 | 6, 7 | impbid1 194 | 1 ⊢ (Ⅎxφ → (∃xφ ↔ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |