New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.9t | GIF version |
Description: A closed version of 19.9 1783. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
19.9t | ⊢ (Ⅎxφ → (∃xφ ↔ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1545 | . . 3 ⊢ (Ⅎxφ ↔ ∀x(φ → ∀xφ)) | |
2 | 19.9ht 1778 | . . 3 ⊢ (∀x(φ → ∀xφ) → (∃xφ → φ)) | |
3 | 1, 2 | sylbi 187 | . 2 ⊢ (Ⅎxφ → (∃xφ → φ)) |
4 | 19.8a 1756 | . 2 ⊢ (φ → ∃xφ) | |
5 | 3, 4 | impbid1 194 | 1 ⊢ (Ⅎxφ → (∃xφ ↔ φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.9h 1780 19.9d 1782 19.9OLD 1784 19.21t 1795 19.23t 1800 19.23tOLD 1819 vtoclegft 2927 |
Copyright terms: Public domain | W3C validator |