NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.9t GIF version

Theorem 19.9t 1779
Description: A closed version of 19.9 1783. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.)
Assertion
Ref Expression
19.9t (Ⅎxφ → (xφφ))

Proof of Theorem 19.9t
StepHypRef Expression
1 df-nf 1545 . . 3 (Ⅎxφx(φxφ))
2 19.9ht 1778 . . 3 (x(φxφ) → (xφφ))
31, 2sylbi 187 . 2 (Ⅎxφ → (xφφ))
4 19.8a 1756 . 2 (φxφ)
53, 4impbid1 194 1 (Ⅎxφ → (xφφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  19.9h  1780  19.9d  1782  19.9OLD  1784  19.21t  1795  19.23t  1800  19.23tOLD  1819  vtoclegft  2927
  Copyright terms: Public domain W3C validator