New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > impbid1 | GIF version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
impbid1.1 | ⊢ (φ → (ψ → χ)) |
impbid1.2 | ⊢ (χ → ψ) |
Ref | Expression |
---|---|
impbid1 | ⊢ (φ → (ψ ↔ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid1.1 | . 2 ⊢ (φ → (ψ → χ)) | |
2 | impbid1.2 | . . 3 ⊢ (χ → ψ) | |
3 | 2 | a1i 10 | . 2 ⊢ (φ → (χ → ψ)) |
4 | 1, 3 | impbid 183 | 1 ⊢ (φ → (ψ ↔ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: impbid2 195 iba 489 ibar 490 pm5.71 902 cad0 1400 19.33b 1608 19.9t 1779 19.9tOLD 1857 a16gb 2050 sb4b 2054 eupickbi 2270 euor2 2272 2eu1 2284 2eu3 2286 ceqsalg 2884 undif4 3608 sneqbg 3876 adj11 3890 elpwuni 4054 opkthg 4132 iotanul 4355 preaddccan2 4456 suc11nnc 4559 phialllem1 4617 ssxpb 5056 xp11 5057 xpcan 5058 xpcan2 5059 imadif 5172 2elresin 5195 f1fveq 5474 f1elima 5475 enpw1 6063 peano4nc 6151 addceq0 6220 ce0tb 6239 addccan2nc 6266 |
Copyright terms: Public domain | W3C validator |