NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2eu2ex GIF version

Theorem 2eu2ex 2278
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2ex (∃!x∃!yφxyφ)

Proof of Theorem 2eu2ex
StepHypRef Expression
1 euex 2227 . 2 (∃!x∃!yφx∃!yφ)
2 euex 2227 . . 3 (∃!yφyφ)
32eximi 1576 . 2 (x∃!yφxyφ)
41, 3syl 15 1 (∃!x∃!yφxyφ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1541  ∃!weu 2204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208
This theorem is referenced by:  2eu1  2284
  Copyright terms: Public domain W3C validator